Asian Pacific Cultural Center Sustainability Audit Report

Audited: December 9, 2011
Submitted: January 13, 2012
Audit performed by: Nick Chaney
Building contact: Sasha Paape

This report contains observations of the Asian Pacific Cultural Center and recommendations to enable building occupants to make their workspace and processes more sustainable. These recommendations aim to respect the unique nature of each space while encouraging occupants to make changes that will reduce environmental impacts.

If you have any questions or comments regarding the format, observations or recommendations of this energy audit, do not hesitate to write or call: sustainability@oregonstate.edu or 737-3307. Other staff or departments interested in receiving a Sustainability Audit are also welcome to contact the email and phone number listed above. Thank you for your time and participation.

Recommendation Summary

<table>
<thead>
<tr>
<th>Conservation Measure</th>
<th>Annual Energy Savings (est.)</th>
<th>Annual $ Savings (est.)</th>
<th>Implementation Cost (est.)</th>
<th>Simple Payback (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replace all incandescent lamps with CFLs. Estimated impact is 19 lamps.</td>
<td>2067 kWh</td>
<td>$98.41</td>
<td>$131.85</td>
<td>1.3</td>
</tr>
<tr>
<td>Retrofit T12 fluorescent fixtures with T8 lamps and ballasts; estimated impact of 5 fixtures.</td>
<td>510 kWh</td>
<td>$24.28</td>
<td>$295.00</td>
<td>12.1</td>
</tr>
<tr>
<td>Install occupancy sensors in men’s restroom; est. impact is 1 fixture and 1 fan</td>
<td>351 kWh</td>
<td>$16.70</td>
<td>$83.65</td>
<td>5.0</td>
</tr>
<tr>
<td>Replace older refrigerators with efficient Energy Star rated refrigerators; estimated impact is 1 refrigerators</td>
<td>886 kWh</td>
<td>$62.00</td>
<td>$425.00</td>
<td>6.9</td>
</tr>
<tr>
<td>Turn off or standby computers at night that typically run 24/7; estimated impact is 5 computers</td>
<td>88 kWh</td>
<td>$4.38</td>
<td>$0.00</td>
<td>Immediate</td>
</tr>
<tr>
<td>Turn off all printers at night that typically run 24/7; estimated impact is 3 printers/copiers.</td>
<td>736 kWh</td>
<td>$44.14</td>
<td>$0.00</td>
<td>Immediate</td>
</tr>
</tbody>
</table>
Turn off heated dry feature on dishwasher; estimated impact is 1 dishwasher (ran once per week).

<table>
<thead>
<tr>
<th></th>
<th>234 kWh</th>
<th>$14.04</th>
<th>$0.00</th>
<th>Immediate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total savings if above changes are implemented</td>
<td>4871 kWh</td>
<td>$263.90</td>
<td>$935.50</td>
<td>3.5</td>
</tr>
</tbody>
</table>

By implementing the changes listed above 9,839 lbs of CO$_2$, 63.32 lbs of SO$_2$ and 31.1 lbs of NO$_x$ will not be emitted into the environment each year.

1- PacifiCorp; 2 - Phil Carver, Oregon Department of Energy

In addition to the savings in the table below, an estimated 8,840 gallons of water ($51.86) can be saved per year by installing aerators on all bathroom faucets. Estimated impact is 2 faucets.

Lighting

Observations:

- Typical fixture is a 2 lamp T12 fluorescent, recessed with opaque diffuser, and 52W incandescent bulbs
- Lights were off in unoccupied areas
- Some lamps were burnt out

<table>
<thead>
<tr>
<th>Table 2: Lighting Energy Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixture Type</td>
</tr>
<tr>
<td>2 lamp T12</td>
</tr>
<tr>
<td>60W incandescent</td>
</tr>
<tr>
<td>52W incandescent</td>
</tr>
<tr>
<td>25W incandescent</td>
</tr>
<tr>
<td>23W CFL</td>
</tr>
<tr>
<td>13W CFL</td>
</tr>
<tr>
<td>9" Circline CFL</td>
</tr>
<tr>
<td>Total</td>
</tr>
</tbody>
</table>

Recommendations:

- Replace all incandescent lamps with compact fluorescent lamps (CFL). CFLs produce light much more efficiently than incandescent and halogen lamps. CFLs also produce less heat, an important factor to consider during the summer months. CFLs come in a wide-range of spectra and intensities, so a suitable CFL can be found for almost any application. As part of the audit
process, the Sustainability Office will distribute CFLs to building occupants. If you would like a CFL and have not yet received one, please contact us.

- **Replace all T12 fixtures with twin or single lamp T8 fixtures.** T8 lamps have a higher efficacy (light output per watt) than T12’s so the same level of light can be maintained while using fewer fixtures and lamps. It is a goal of Facilities Services to replace all T12 lamps on campus, however, due to the quantity of T12’s, this will be a long process. If a department is eager to replace inefficient lighting, and is willing to participate in a cost-sharing mechanism, certain areas can become a priority. Please contact the Sustainability Office for more information.

- **Report instances of improperly-timed outdoor lighting.** Outdoor lighting is usually controlled by either timers or photosensors. If these controls fail, lighting will remain on even if natural light provides sufficient illumination. If you notice outdoor lighting that is improperly timed please contact the Sustainability Office.

- **Request occupancy sensors in common areas such as restrooms, kitchens and copy rooms where lights are typically left on.** These types of sensors are efficient and easy to install. They automatically turn off the lights if no motion is detected within a specified period of time. Detailed recommendations for specific spaces can be provided upon request. Also available are manually-activated switches that have a multi-option timer so lights go out after the specified amount of time. These timer switches are ideal for rooms with windows where electrical lighting may not be necessary during the day.

- **Request delamping for areas that are overlit** or areas where natural or task lighting provides sufficient illumination. Please email sustainability@oregonstate.edu for more information on delamping procedures.

- **Utilize natural lighting wherever possible.** In many cases, natural lighting provides sufficient illumination for a variety of tasks. In locations where windows allow for enough light to enter the work areas, turn off lighting as it is not needed. Also, by arranging spaces and furniture throughout the building in a way that utilizes natural light to the maximum possible extent, electric lighting use is decreased and occupants achieve superior lighting levels and consistency. If necessary, use task lighting to supplement natural lighting.

- **Request replacement or delamping of burnt-out fluorescent lamps.** Unlike incandescent lamps, burnt-out fluorescents still consume energy. If the light level in the area is adequate without the lamp lit, please email sustainability@oregonstate.edu for more information on delamping procedures. If the lamp has been out for more than two weeks and needs to be replaced, contact Facilities Services by email at FacilitiesCustomerServ@oregonstate.edu or by phone at 7-2969. Notes on specific areas in your building with burnt-out lamps are available upon request.

 Computers and peripherals:

 Observations:

 - All computers and monitors were observed off in unoccupied spaces
 - All printers had standby modes enabled
- Computer peripherals (speakers, external hard drives etc.) were off in unoccupied areas
- A cathode-ray tube TV was noted

Table 3: Office Equipment Energy Usage

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Quantity</th>
<th>Energy consumption active (est.)</th>
<th>Energy consumption standby/sleep (est.)</th>
<th>Energy consumption off (est.)</th>
<th>Total (Watts w/ units on)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer</td>
<td>5</td>
<td>52W</td>
<td>2W</td>
<td>0W</td>
<td>325</td>
</tr>
<tr>
<td>Liquid crystal display (LCD) monitor</td>
<td>5</td>
<td>26W</td>
<td>0W</td>
<td>0W</td>
<td>175</td>
</tr>
<tr>
<td>Cathode Ray Tube screens (CRT)</td>
<td>1</td>
<td>60W</td>
<td>2-45W</td>
<td>0W</td>
<td>60</td>
</tr>
<tr>
<td>Laptops</td>
<td>0</td>
<td>15W</td>
<td>1W</td>
<td>1W</td>
<td>0</td>
</tr>
<tr>
<td>Misc. printer/copier/fax (avg.)</td>
<td>1</td>
<td>1840W</td>
<td>113W</td>
<td>0W</td>
<td>1840</td>
</tr>
<tr>
<td>Total (Watts)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2400W</td>
</tr>
</tbody>
</table>

Recommendations:

- **Turn off or standby computers at night** and have them enter standby when not in use for extended periods of time (30 minutes or longer). Standby or shut off monitors that have been inactive for 10 minutes.
 - On most computers, power management options can be found under the Control Panel (from Start ➔ Settings ➔ Control Panel). Click ‘Power Options’. Here you can designate when your monitor or computer should enter standby.
 - Turning a computer on and off does not damage its hardware like it once did. Most hard disks are rated at 20,000 on/off cycles. If turned on/off once a day, it would take 55 years to reach this rating number.

- **Manually turn off cathode-ray tube (CRT) monitors at night** or during prolonged downtime (10 minutes or longer). Older (pre-1995) CRTs consume considerable energy even while in standby or sleep modes. In one case, we measured a 17” CRT using 58W while on and 45W in standby. Turning them off (using the hard switch) guarantees that these monitors are not drawing a large phantom load.

- **Purchase liquid crystal display (LCD) monitors** when replacing CRT monitors or for new workstations. LCDs use considerably less energy and cause less eye strain, and their slimmer profile increases useable workspace. Consider EPEAT™ or Energy Star® certified products.
which meet stringent energy-saving and environmental criteria.

- **Turn off printers at night (especially laser printers)** that typically are on all day. Laser printers consume considerable amounts of energy even while in standby mode; according to manufacturer’s specifications, several laser printers inventoried during the audit consume over 98W while in standby! The average standby power draw is 37W. If high volume printing is not necessary, recommend that staff use inkjet printers, which typically use considerably less energy (<5W) when in standby.

- **Use a surge protector for computer peripherals and other accessories.** While many computer peripherals like speakers, scanners and external hard drives do not use very much energy (<5W), the accumulated energy consumption is significant. By having them all plugged in to a surge protector, not only are they protected from fluctuations in current, they also can be easily shut off at night or during extended periods of downtime.

- **Use laptops in place of desktops when appropriate.** Laptops use considerably less energy than a desktop (20-30 W vs. 100-150 W) and do not require an uninterruptible power supply. A laptop docking station allows for desktop-like function while at work or at home while allowing the full portability required of a laptop.

- **Set copiers and printers to 15 minutes before entering power-save mode.**

Other Electrical Equipment

Observations:

- 1 regular size refrigerators were observed
- 1 TVs, 1 microwaves, and toaster oven
- Dishwasher was set to heated dry

Recommendations:

- **Plug accessories into a surge protector** so they can be easily shut off at night and on weekends. Many of the accessories listed above require a constant power supply to power displays and maintain system functions. While this phantom load is usually small for an individual piece of equipment, the aggregate power consumption can be surprising. A surge protector is a safe and convenient way to protect these devices while allowing the user a fast and simple way to shut them off when they are not in use.

- **Allow dishwasher to air dry instead of heated dry.** The heated drying cycle uses at least 15 percent more energy than air-drying. The increased energy usage increases your electric expenses over time. Air-drying reduces the energy consumption by eliminating the heating element from the process.

- **Consolidate contents of seldom-used refrigerators to reduce the number of total refrigerators.** Also consider consolidating the contents of mini-fridges into large, shared refrigerators, which are more efficient. Small ‘mini’ refrigerators use between 200 to 300 kWh
annually. A new, full-sized refrigerator uses only about 600 kWh to cool a volume many times greater.

- **Consider replacing fridges that are made before 1990.** Due to technological advances, newer fridges are at least 50% more efficient than pre-1990 models. Contact the Sustainability Office for information on rebates and incentives, as well as potential cost-sharing opportunities.

- **Tips for efficient refrigerator and freezer use:**
 - Keep fridges 2” away from the wall and clean coils every 6 months
 - Clean or replace gaskets on doors to maintain an effective seal
 - Set refrigerator temperature to 40°F and freezer to 0°F
 - Fill empty space with jugs of water in the fridge and blocks of ice in the freezer. This minimizes the cooling loss of opening the fridge or freezer door.

Recycling

Observations:

- Paper and commingled recycling bins were present in the area

Recommendations:

- **Ensure enough recycling bins are located to be convenient for all office occupants.** Ideally, a commingled recycle bin would be adjacent to every trashcan in a common area. For more information on recycling, please visit the Campus Recycling website at http://recycle.oregonstate.edu/ or contact them via email.

Additional Notes:

- If your office space generates electronic waste, consider participating in a new electronic media recycling program offered by Campus Recycling. Items such as CDs, CD cases, 3.5” floppy discs, and audio/visual tapes are accepted. For more information on this program, contact Campus Recycling.

Purchasing

Recommendations:

- **Consider Energy Star® products when replacing appliances and office equipment.** These products are typically 10-30% more efficient than non-rated models and the purchase price difference is oftentimes negligible.

- **Consider EPEAT™-certified computers and accessories** when purchasing new equipment. EPEAT™ evaluates products on a wide-range of environmental criteria, ranging from energy consumption and materials to toxic content and end-of-life management.

Paper Use

Recommendations:
• On all computers, set double-sided printing as the default setting for printers with this capability.

• Encourage printing on clean side of single-sided paper. Add small boxes near printers containing this draft paper or leave a stack of this paper in printer bypass feeders.

• Consider purchasing recycled paper with a high post-consumer content (50%+) for your space. Recycled paper is compatible with all printers and costs only slightly (15%) more than virgin material, while significantly reducing the environmental impacts of printing.

Heating & Cooling

Observations:

• The efficient two-stage furnace was rated at 92 Annual Fuel Utilization Efficiency (AFUE)

• A 50-Gallon gas hot water heater was noted

• Ducts in basement were insulated

• Open holes were noticed in exterior walls for wiring

• Windows were typically single pane with wooden frames; air infiltration was significant

Recommendations:

• **Consider alternatives to forced air space heaters.** While effective in small, well-insulated spaces with low ceilings, forced air space heaters are inefficient in areas where the warm air can easily escape or rise above the occupied zone. Alternatives allow for equal comfort while using significantly less energy. Radiant heaters use 100-200W, compared to 1500W for forced air heaters, and users report increased comfort at lower air temperatures. Radiant heaters are also preferred from a fire safety standpoint.

• **Try these energy-saving tips to keep yourself comfortable:**
 - Dress appropriately for the weather: wear light, breathable clothing in summer and layer clothing during the winter
 - Use fans instead of AC units, and radiant heaters (which heat you and not the air) instead of space heaters
 - Close shades or blinds during hot days (keeps heat out) and on cold nights (keeps heat in)

• **In winter, limit air infiltration with a draft stopper.** There are many different options, but a simple and inexpensive solution is to use a towel or a window ‘sock’ to block air from entering the space. Other options like interior storm windows are available. [Contact us](#) for more info.

• **Consider installing a programmable learning thermostat.** By having a programmable thermostat the furnace will only turn on when the building is occupied. A learning feature allows the thermostat to learn the habits of occupants and eliminates the need to program them.
Water Conservation

Observations:

- All hand washing sinks had aerators that limited flow to 2.2 gallons per minute (gpm), but the accepted industry standard is 1.0 gpm

Recommendations:

- **Request aerators to limit flow on hand washing sinks to 1.0 gpm maximum.** Unless a sink is used for filling, 1.0 gpm is an adequate amount of water for hand washing while conserving water.

- **Report leaking faucets** to the Sustainability Office. A leaking faucet with 30 drips per minute can waste over a thousand gallons of water per year.

- **Install timers on water heaters.** A timer can be installed on the existing water heaters, which allows them to be used only during peak usage periods.